skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hurtado, Omar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Proofs of localization for random Schrödinger operators with sufficiently regular distribution of the potential can take advantage of the fractional moment method introduced by Aizenman–Molchanov [Commun. Math. Phys. 157(2), 245–278 (1993)] or use the classical Wegner estimate as part of another method, e.g., the multi-scale analysis introduced by Fröhlich–Spencer [Commun. Math. Phys. 88, 151–184 (1983)] and significantly developed by Klein and his collaborators. When the potential distribution is singular, most proofs rely crucially on exponential estimates of events corresponding to finite truncations of the operator in question; these estimates in some sense substitute for the classical Wegner estimate. We introduce a method to “lift” such estimates, which have been obtained for many stationary models, to certain closely related non-stationary models. As an application, we use this method to derive Anderson localization on the 1D lattice for certain non-stationary potentials along the lines of the non-perturbative approach developed by Jitomirskaya–Zhu [Commun. Math. Physics 370, 311–324 (2019)] in 2019. 
    more » « less